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Real-time Depth Estimation Using Recurrent CNN with Sparse Depth
Cues for SLAM System
Sang Jun Lee, Heeyoul Choi, and Sung Soo Hwang*

Abstract: Depth map has been utilized for refinement of geometric information in a variety of fields such as
3D reconstruction and pose estimation in SLAM system where ill-posed problems are occurred. Currently, as
learning-based approaches are successfully introduced throughout many problems of vision-based fields, several
depth estimation algorithms based on CNN are suggested, which only conduct training of spatial information.
Since an image sequence or video used for SLAM system tends to have temporal information, this paper proposes a
recurrent CNN architecture for SLAM system to estimate depth map by exploring not only spatial but also temporal
information by using convolutional GRU cell, which is constructed to remember weights of past convolutional
layers. Furthermore, this paper proposes using additional layers that preserve structure of scenes by utilizing sparse
depth cues obtained from SLAM system. The sparse depth cues are produced by projecting reconstructed 3D map
into each camera frame, and the sparse cues help to predict accurate depth map avoiding ambiguity of depth map
generation of untrained structures in latent space. Despite accuracy of depth cues according to monocular SLAM
system degrades than stereo SLAM system, the proposed masking approach, which takes the confidence of depth
cues with regard to a relative camera pose between current frame and previous frame, retains the performance of the
proposed system with the proposed adaptive regularization in loss function. In the training phase, by preprocessing
exponential quantization of ground-truth depth map to eliminate the ill-effects of the captured large distances, the
depth map prediction of the proposed system improves more than other baseline methods with accomplishment of
real-time system. We expect that this proposed system can be used in SLAM system to refine geometric information
for more accurate 3D reconstruction and pose estimation, which are essential parts for robust navigation system of
robots.
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1. INTRODUCTION

Depth map, which records depth information of 3D
scene as an image format, has been used for more sophis-
ticated development of several technologies in 3D recon-
struction, and location recognition [1, 2]. This is because
depth map is important information for understanding
the geometric structure of an object in three-dimensional
space. Such depth map can be acquired easily by using a
LiDar or depth sensor, but it is not easy to be used in em-
bedded systems because of high unit price. Another way
to estimate depth map is to use a stereo camera. However,
in order to acquire depth map from a stereo camera, it is
necessary to be accurate calibration both binocular cam-
eras, and disparity matching of each pixel unit which is
complicated and computationally intensive that leads no

real-time system.
Therefore, research on depth estimation of images cap-

tured from monocular camera has been actively studied.
In early approaches, statistical models that utilize spe-
cially designed textures or filters for a scene is used to esti-
mate depth map [3]. However, those approaches are failed
in complex scenes because the designed textures or filters
have limits to recover and express depth in such scenes,
and are vulnerable to various distance scale variations.

While introduction of deep neural network, which is a
learning-based approach, is a successful example in many
computer vision fields, several algorithms for depth map
generation based on deep neural network have been pro-
posed resolving several limitations in statistical model-
based approaches. The deep neural network structure for
depth estimation generates robust depth maps to scene
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complexity and scale variation without special feature de-
sign through learning.

Since the model based on deep neural network for depth
estimation receives an image and generates depth map im-
age, the model is mainly composed of the CNN (Convo-
lutional Nerual Network) model suitable for inferring spa-
tial information [4,5]. However, the CNN-based approach
cannot handle temporal information such as video or se-
quential images.

Currently, camera-based Visual SLAM (Simultaneo-
usly Localization and Mapping) systems [6, 7] has con-
sidered to use depth information. Visual SLAM is a tech-
nique utilized for self-driving car, robotics by generating
3D feature maps and calculating localization (i.e. pose
estimation) synchronistically on multi-threading using se-
quentially acquainted images from camera sensor. Depth
map can help accurate localization where there are less
feature points, or pure rotation problem is presented. Ex-
cept for depth sensor or LiDar that is expensive, depth in-
formation obtained by stereo camera calculating dispar-
ity map cannot be used for Visual SLAM since it cannot
guarantee real-time computation. Therefore, the research
for depth estimation without any heavy operations such as
calculating disparity map is necessary for real-time com-
putation. Even though depth values with regard to the fea-
ture points in Visual SLAM calculated by projecting re-
constructed 3D map are hard to be full depth map because
they are too less and sparse, they can be obtained in real-
time. Therefore the sparse depth values can be used for
depth cues for depth prediction.

In this paper, we propose a novel depth map estimation
algorithm for SLAM system based on deep nerual network
in real-time. The proposed deep neural network struc-
ture is based on recurrent convolutional neural network
using Convolutional GRU(Gated Recurrent Unit), which
considers sequential information such as consecutive im-
ages utilized for SLAM system. By considering spatio-
temporal information while CNN considers only spatial
information, the structure of scene is more robustly and
constantly recovered than using CNN-based method.

Moreover, this paper presents depth map refinement by
using sparse depth cues obtained from SLAM system. Us-
ing additional convolutional layers for sparse depth cues
and their masks controls reliability of sparse depth cues.
And the proposed regularization using sparse depth cues
with the confidence of depth cues in loss function can
learn accurate structure of scenes even untrained struc-
tures by exploring latent space according to depth cues.
Because the confidence between monocular SLAM sys-
tem and stereo SLAM system is different, we propose an
analytic confidence value of mask based on the relative
pose between camera poses of current frame and previous
frame in SLAM system.

By taking space increasing discretization that quantizes
depth information in exponential map to avoid the prob-

lem of large distances, more accurate learning is operated
by the proposed system.

In summary, the contributions of this paper are as fol-
lows:

1) We propose a recurrent CNN model for depth estima-
tion tailored to SLAM system. The proposed struc-
ture learns spatio-temporal information by convolu-
tional GRU cells that can remember past convolutional
layers effectively.

2) We propose the way to apply sparse depth cues ob-
tained from SLAM system to the proposed network
structure with the confidence of depth cues to control
reliability of depth cues.

3) We suggest regularization term in loss function that
consists of utilizing depth cues. Using depth cues in
regularization improves generation of reliable struc-
tures.

4) We utilize an exponential quantization method to dis-
cretize depth map for avoiding any ill-effects of large
distances in depth information.

This paper is organized as follows: In Section 2, we
introduce several deep neural network-based depth esti-
mation methods with prior knowledge that need to under-
stand this paper. And then, we demonstrate the proposed
methods in Section 3. We explain the experiments in Sec-
tion 4 and conclude in Section 5.

2. RELATED WORK & PRIOR KNOWLEDGE

2.1. Related work
Recently, while CNN-based depth estimation has been

actively studied, the first approach is that Eigen et al. [4]
proposed a model based on coarse-fine approach to solve
inherent ambiguity about scale of depth. The coarse net-
work captures a coarse global structure based on entire im-
age, and the fine network refines captured structure more
locally. Moreover, they suggest a scale-invarient error
to help measure depth relations beyond the scale in log
space. Even though this method is fast and capture global
and local structures, this model has limitation to take low
resolution and accuracy.

Fu et al. [5] proposed a model seen depth map estima-
tion as an ordinal regression problem. The proposed ordi-
nal regression model and space increasing quantization of
depth map are proposed to address ill-effects of large dis-
tances. By applying scene understanding modular that uti-
lizes skip connections with cross-channel interactions, this
model can preserve structure of scenes well. Even though
this method is very accurate by the proposed strategies, it
is hard to be real-time process because the model utilizes
pre-trained deep feature extractors that have an amount of
parameters.

Those CNN-based approaches are conducted to esti-
mate depth map on each of individual images. In contrast
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with the CNN-based approaches, a recurrent CNN-based
approach is proposed for SLAM system by Kumar et
al. [8]. This method utilizes Convolutional LSTM(Long-
Short Term Memory) [9]. The results of depth estimation
based on recurrent CNN are good for SLAM system by
exploring spatio-temporal information of depth. However,
the method does not utilize any depth cues that can be pro-
duced by SLAM system that can improve the estimation
of depth map.

2.2. Depth preprocessing
Depth information obtained from a sensor has the depth

values which are recorded according to each distance.
Each distance is rectified by the range of the used sen-
sor to be captured within 16 bit range. By the way, the
larger depth values have the larger errors as discussed in
[5] because of the limitation of depth sensor.

Even though depth information is less rich if the depth
values become larger, the depth values is quantized by uni-
form discretization in a depth map as:

τi = α +(β −α)∗ 1
K
, (1)

where the interval is [α , β ], K is the number of sub-
intervals with discretization thresholds τi ∈ {τ0, ..., τK}.

To address this problem, Fu et al. [5] proposed SID
(Spacing-increasing discretization) which discretizes
depth values in log space to down-weight the training
losses in regions with regard to the large depth values.
The quantization using SID strategy is following equa-
tion:

τi = elog(α)+ log(β/α∗i)
K . (2)

Note that we use α and β as the range of intensity of
the depth image, and K is 80 as suggested in [5]. The SID
strategy helps to be more accurate prediction as shown the
experiments in Section 4.

2.3. Convolutional GRU
GRU(Gated Recurrent Unit) cell [10] is proposed for

RNN(Recuurent Neural network) model to learn time se-
ries data and to overcome gradient vanishing problem that
could lose information of past layers. GRU cell is an al-
ternative cell to LSTM(Long-Short Term Memory) [11],
which is more efficient with high accuracy of prediction.

While a GRU cell only covers temporal information,
Convolutional GRU cell proposed by [12] is designed to
preserve spatio-temporal information by exploring spatial
domain through convolutional layers on GRU architec-
ture. A convolutional GRU cell is constructed as:

zt = σ (Wz ⋆ xt +Uz ⋆ht−1) , (3)

rt = σ (Wr ⋆ xt +Ur ⋆ht−1) , (4)

h̃t = tanh(W ⋆ xt +U ⋆ (rt ◦ht−1)) , (5)

ht = (1− zt)◦ht−1 + zt ◦ h̃t , (6)

where zt is an update gate at time t, rt is a reset gate at
time t, and ht is the updated hidden state at time t, σ is
the sigmoid function. Wz, Wr, W and Uz, Ur, U are 2D-
convolutional kernels, xt is the input at time t, and opera-
tion ⋆ indicates convolution and operator ◦ is for element-
wise multiplication between two tensors. The hidden re-
current representation ht preserves the spatial topology as
ht = (ht (i, j)) where ht(i, j) is a feature vector at location
(i, j). Using this simple architecture, convolutional GRU
can learn the structure of spatial information with tempo-
ral information.

3. METHODS

3.1. Proposed network
The proposed network architecture in this paper is

shown in Fig. 1. The architecture of the proposed net-
work accepts consecutive N images as inputs and gener-
ates corresponding depth images through encoder-decoder

Fig. 1. The network architecture of the proposed system.
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architectures. The encoder framework consists of Convo-
lutional GRU cells in each layer, and the decoder frame-
work is composed of de-convolutional layers and convo-
lutional layers. To decode encoded learning parameters
to depth image, a de-convolutional layer functions as up-
sampling process, and a successive convolutional layer is
operated to learn latent space with regard to the upsampled
image and reduce dimension of tensor size.

The proposed model is in the form of a U-net [13]
structure to improve speed and performance similar to
[8]. U-net architecture is proposed for image segmentat-
ion that accomplishes real-time system, and the proposed
skip connections between encoder and decoder framew-
orks help to understand structure of scenes. The proposed
system also applies the skip connections between layers of
encoder-decoder structure concatenating correspo-nding
convolutional layers. At the end of the model, there is
a 1× 1 convolutional layer to generate the depth param-
eters of the decoded parameters. Moreover, all depth im-
ages that are used for ground-truth in training phase and
sparse depth cues are quantized by SID strategy discussed
in Section 2.2. This preprocessing prevents ill-effects of
large distances.

Fig. 2 shows unfolded structure of the proposed sys-
tem since this method is proposed as an recurrent network
model. For successive N times, a RGB image and sparse
depth cues obtained SLAM system with the confidence λ
at time t are inputted to the proposed network. The param-
eters of the convolutional GRU cells for the previous time
are passed to the cells of next time, and the model con-
ducts regression between all predicted depth images and

Fig. 2. The unfolded structure of the proposed network
model.

ground-truth depth maps with respect to all times. To this
end, the sparse depth cues and the confidence value are
used for regularization in regression function. The learn-
ing is operated by minimizing the proposed loss function
in regression based on back-propagation.

In Section 3.2, we show how to obtain sparse depth cues
in SLAM system with respect to monocular system and
stereo system with their confidence. In Section 3.3, we
propose regularization using sparse depth cues with the
confidence in the used loss function. In Section 3.4, we
explain details for implementation of this system.

3.2. Acquisition of depth cues and the confidence
The Visual SLAM system generates 3D features in 3D

map by triangulating matched 2D features between the
current frame and previous frame, and estimates the cam-
era pose of current frame using matched 3D-2D feature
points by minimizing geometric measurement. Therefore,
depths of pixels according to 2D features in current frame
can be calculated by matched 3D features as following (7):

depth(X,P) =
sign(det M)ω

∥m3∥ , (7)

where X = (X,Y,Z,1)T is a reconstructed 3D point, and
P = [M | p]4] is a projection matrix that transforms 3D
point X in absolute 3D coordinates to a 2D point x =
ω(x,y,1)T in a camera coordinates, i.e., PX = x [14].

At this time, the stereo SLAM system is no need for
an initialization step because the stereo system can di-
rectly generate 3D feature points using matched 2D fea-
tures between two binocular cameras. In addition, esti-
mated depth values using (7) in the stereo SLAM system
that two binocular cameras are pre-calibrated are same
with the depth values obtained from depth sensors. Thus,
depth values calculated in the stereo SLAM system have
high reliability that can be used for depth cues. Fig. 3
shows acquired depth cues on stereo SLAM system. As
shown in the figure, sparse but many depth values of fea-
tures are illustrated. Those features are reliable so long as
they are matched.

In contrast with the stereo SLAM system, the monocu-
lar SLAM system, which uses a single camera, generates
sparse few and unstable depth values. This is because gen-
eration of 3D features is operated between current frame

Fig. 3. Sparse depth cues obtained from stereo SLAM sys-
tem. This figure is inverted for clear visualization.
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Fig. 4. Sparse depth cues obtained from monocular
SLAM system.

and consecutive previous frames, those 3D features are
filtered through consistency measurement between 3D-
2D data association [15]. In addition, accurate genera-
tion of 3D features is affected by relative camera move-
ment known as scale drift [14]. The larger rotation than
translation, the more errors are incremented owing to that
matched features may be generated as ideal points. More-
over, the 3D map reconstructed by monocular SLAM sys-
tem has no absolute scale since the initial map is generated
up to scale. Therefore, monocular SLAM system gener-
ates different scale of map as often as the system is run.
As such reasons, sparse few and unstable depth values of
features are estimated as drawn in Fig. 4.

To deal with those problems, scale drift and scale am-
biguity, the proposed system concatenates a RGB image
with sparse depth cues as a 1× 1 convolutional layer and
another 1 × 1 convolutional layer filled with the confi-
dence λ where the depth cues are non-zero as a mask.
The 1× 1 convolutional layer for sparse depth cues pre-
vent scale ambiguity by learning the relationship suitable
scale for ground-truth depth map. And another 1×1 con-
volutional layer used as a mask filters non-zero values in
the depth cues, controls whether the sparse depth cues are
reliable by the analytically calculated confidence, and up-
dates the confidence to be more suitable by learning.

The confidence λ can be calculated as follows. To com-
pensate the confidence if translation is relatively larger
than rotation in monocular SLAM system, λ can be ob-
tained as:

λ = min
(

1,
exp(△ t)
△ θ

)
, (8)

where exp(·) is the function that takes an exponential
value, △ t ∈ R3 and △ θ ∈ R3 are respectively differen-
tial translation and rotation between two frames at time t
and t − 1. The reason why taking min(·) is to avoid ex-
ceeding the maximum weight of 1. Given camera poses
[R | t]t , [R | t]t−1inR3×4 (R is a 3×3 rotation matrix, t is a
3×1 translation vector), △ t and △ θ are calculated as:

△ t = ∥tt − tt−1∥2
2 , (9)

△ θ =
vt ·vt−1

∥vt∥∥vt−1∥
, (10)

where v is the rotation axis of a rotation matrix represented
by exponential map [16], and can be obtained by

v =
1

2sinφ

r32 − r23

r13 − r31

r21 − r12

 , (11)

where

φ = arccos
(

trace(R)−1
2

)
, (12)

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 ∈ SO(3) . (13)

In the stereo SLAM system, since obtained depth values
are accurate, the confidence α is set to one for the stereo
system.

3.3. Loss function with proposed regularization
To learn the proposed deep neural network model, pro-

posed loss function is needed for regression minimizing
the error. Scale-Invarient Error proposed by Eigen et al.
[4] solves the regression problem in log space to reduce
the effects of projected distance as:

Loss(y,y∗) =
1
n ∑

i
l2
i −

0.5
n2

(
∑

i
li

)2

, (14)

where li = logyi − logy∗i is the difference between pre-
dicted depth values and ground-truth depth values in log
space, and n is the number of valid depth values.

The proposed system utilizes additional regularization
to enforce the restoration of the structure according to the
sparse depth cues in the depth prediction. Thus, the pro-
posed loss function including the regularization is:

L(y,y∗,d) = Loss(y,y∗)+
1
m ∑

i
∥λdi>0 · (yi −di)∥2

2 ,

(15)

where di is the sparse depth cues, and m is the number
of depth cues if di > 0. The learning is performed by
back-propagation minimizing the proposed loss function
L(y,y∗,d).

3.4. Implementation details
This model is implemented by Pytorch with GTX 1080

GPU. We build this system using [64, 128, 128,256,256
512,512] layers for encoder and [512, 256, 256, 128, 128,
64, 64, 32] layers for decoder. The image size is set by
proposed in [4]. For the learning phase, we utilize early
stopping to prevent over-fitting and gradient clipping set to
0.5 to avoid gradient explosion in training. We set epochs
to 20 and learning rate to 0.0001, the training is done
within 20 epochs by early stopping. All layers in decoder
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utilize batch normalization with Relu operation. The last
layer applies sigmoid operation to predict depth map for
regression. All strides in this model are one and filter sizes
are 3×3.

We utilize ORB SLAM 2 [6] as the SLAM system to
obtain depth cues for both of monocular system and stereo
system. All confidences are calculated through relative
camera poses between consecutive frames. If a frame has
no consecutive frames i.e., first frame or last frame, it uses
own frame as consecutive frames.

4. EXPERIMENT

All experiments are conducted on GTX 1080 GPU. For
the experiment, we evaluate the proposed model on the
KITTI dataset [17]. The KITTI benchmark dataset pro-
vides high quality image sequences that are captured by
car-mounted cameras and Velodyne LiDar sensors of out-
door scenes as shown in Fig. 5. It provides 56 scenes
and we split 28 scenes for training and validation and 23
scenes for test. We set time steps N to 3 for training the
convolutional GRU cells.

To evaluate the proposed system, we use standard met-
rics proposed by [4]. For the accuracy metric(higher
is better), the accuracy is calculated by max(yi/(y∗i ),
y∗i /yi) = δ < threshold. For the error metric (lower is
better), variety metrics are used such as Abs Rel (Abso-
lute relative difference), Squa Rel(Squared relative differ-
ence), and RMSE (Root mean squared error) suggested in
[4]. We only use one predicted depth map by last decoder
for all tests.

We first compare among the proposed methods. Note
that we call the proposed basic model that utilizes Conv.
GRU (Convolutional GRU) cell as the Baseline, and we
apply several approaches such as SID and mono (monoc-
ular) cues or stereo cues with or without the reg. (regu-
larization) term. Note that we do not apply regularization
term for the monocular cues because in monocular system,
monocular cues has scale ambiguity and it cause gradient
explosion in the regularization term.

In the experiment as shown in Table 1, It can be seen
that the performance of methods that the proposed strate-
gies are applied is improved. For example, a method that
the SID approach is applied is better than one that does not
apply it in terms of accuracy and error metrics due to its
reduction of errors, and a method utilizing depth cues out-
performs those that do not apply depth cues, by preserving
structure of the depth cues.

The performance without the regularization term of
methods utilizing stereo cues or mono cues is similar to
each other. This is because the first two convolutional
layers for depth cues and a mask learn suitable weights
for monocular or stereo cues even though monocular cues
have scale ambiguity. Learning by the regularization term
outperforms methods that learn without the regularization
term, by directly exploring the depth cues to predict struc-
tures according to the depth cues.

We also compare the proposed methods with other
methods proposed for depth prediction. We report the re-
sults of other methods from [5] as testing similar envi-
ronments. The results are shown in the Table 2. In the
results, except the DORN (ResNet) [5] model, the pro-

Fig. 5. An RGB image and ground truth of depth in KITTI dataset. The ground truth depth is given as semi-dense format
obtained by a Velodyne sensor.

Table 1. Comparison of depth prediction with the proposed methods on KITTI dataset.

Method Accuracy metric (higher is better) Error metric (lower is better)
δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Squa Rel RMSE

Baseline(Conv.GRU) 0.833 0.954 0.978 0.114 0.639 4.297
Baseline+SID 0.842 0.954 0.978 0.117 0.602 4.280

Baseline+mono cues 0.837 0.954 0.978 0.116 0.633 4.207
Baseline+SID+mono cues 0.843 0.956 0.979 0.112 0.692 4.119

Baseline+ stereo cues 0.842 0.954 0.978 0.127 0.820 4.109
Baseline+ stereo cues+reg. 0.844 0.957 0.978 0.120 0.721 4.059
Baseline+SID+stereo cues 0.851 0.959 0.979 0.118 0.754 4.046

Baseline+SID+stereo cues+reg. 0.860 0.964 0.981 0.112 0.647 3.974
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Table 2. Comparison of depth prediction with the other methods on KITTI dataset.

Method Accuracy metric (higher is better) Error metric (lower is better)
δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Squa Rel RMSE

Make 3D [18] 0.601 0.820 0.926 0.280 3.012 8.734
Eigen et al. [4] 0.692 0.899 0.967 0.190 1.515 7.156
Liu et al. [19] 0.647 0.882 0.961 0.217 1.841 6.986
Depthnet [8] 0.828 0.945 0.972 0.127 0.838 4.505

Baseline(Conv.GRU) 0.833 0.954 0.978 0.114 0.639 4.297
Baseline+SID 0.842 0.954 0.978 0.117 0.602 4.280

Baseline+SID+mono cues 0.843 0.956 0.979 0.112 0.692 4.119
Baseline+SID+stereo cues+reg. 0.860 0.964 0.981 0.112 0.647 3.974

DORN (ResNet) [5] 0.932 0.984 0.994 0.072 0.307 2.727

posed methods outperforms other methods. DORN model
as an CNN-based model utilizes a pre-trained deep fea-
ture model called ResNet 101, which is designed by stack-
ing 101 deep convolutional layers to extract features of
scenes, so it is very accurate but cannot be accomplished
as real-time depth prediction system. It is reported in [20]
that ResNet 101 spends almost 0.2 sec on same hardware
(GTX 1080 GPU) and extra layers proposed in DORN
spend more times.

In contrast, the proposed methods do not require
the pre-trained deep CNN model for feature extraction
because the proposed methods train features of struc-
tures through temporal information by a recurrent model.
Therefore, the proposed methods performs in real-time
system by spending mean 0.08 sec (i.e., 12.5 Hz) with
high accuracy of depth map prediction.

The time required to calculate monocular cues, stereo
cues, or the confidence λ is negligible. This is because
such information is given by SLAM system. The depth
cues are directly obtained by projecting observed 3D map
points into the current camera frame by using (7), and the

camera poses for the confidence are simultaneously calcu-
lated in SLAM.

For other methods, Make 3D [18], Eigen et al. [4] and
Liu et al. [19] can accomplish the real-time system as
reported in their papers, but accuracy and resolution are
lower than the proposed methods. Speed of Depthnet [8]
is similar to the proposed system.

As the proposed system is a recurrent model, the system
can predict N depth images. It means that it can be seen
12.5×N Hz by generating N consecutive depth images si-
multaneously as shown in Fig. 6. Therefore, the proposed
model is suitable for SLAM systems that needs to accom-
plish 30 Hz processing for real-time system. Note that
the predicted depth is only accurate in where the ground
truth depth is given because the ground truth depth is semi-
dense.

Moreover, this system generate very robust depth im-
ages in temporal domain. Fig. 7. shows depth prediction
on subsequent N images. The proposed system is hard to
find differences between generated subsequent depth im-
ages.

t −2 t −1 t
Fig. 6. Simultaneously generated N consecutive depth images by the proposed model. The proposed model can generate

N consecutive images through the individual N decoder. The first row indicates RGB images in each time, the
second row shows ground truth depth information, and the third row denotes the simultaneously generated depth
images according to each time. More bright values indicate more larger distances.
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t −2 t −1 t

t −2 t −1 t

t −2 t −1 t

Fig. 7. Generated N subsequent depth images. Each depth map is generated by last decoder. The first row indicates RGB
images in each time, the second row shows ground truth depth information in each time, and the third row denotes
the generated depth images in each time. More bright values indicate more larger distances.

In addition, Fig. 8 shows examples of depth map pre-
diction among the proposed methods and other meth-
ods. We only illustrate DepthNet with the proposed
methods Baseline, Baseline+SID+mono cues, and
Baseline+SID+stereo cues+reg. This is because Make
3D, Eigen et al. or Liu et al. is fast but has low res-
olution with less accuracy excepting DORN as a non
real-time system. DepthNet is an approach with similar

performance with the proposed systems. We show the im-
provement of the system than DepthNet and differences
among the different proposed strategies in Fig. 8.

In the figure, Baseline is similar to DepthNet but more
accurate in the form of scenes. Using either mono cues
or stereo cues preserves edges of structures such as cars,
buildings, or trees better than Baseline and DepthNet.
Moreover, using stereo cues with regularization gener-
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Fig. 8. Examples of depth map prediction among the proposed method with other methods. In each row (6 images), the
first image is a RGB image, the second image is given the ground-truth depth, the third image indicates generated
depth by DepthNet [8], the fourth image shows generated depth by Baseline, the fifth image is the depth map
generated by Baseline+SID+mono cues, and the sixth image shows the depth generated by Baseline+SID+stereo
cues+regularization. More bright values indicates more larger distances.

ates more accurate images than using mono cues. This
is because stereo cues preserve more accurate edges of
structures than mono cues. Therefore, it shows that using
accurate depth cues improves the performance of depth
prediction.

5. CONCLUSION

In this paper, we present a recurrent CNN model for
depth prediction. This model is proposed for SLAM
systems that should be real-time system. By utilizing
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valuable information such as camera poses and sparse
depth cues, the proposed strategies improve the proposed
model. The proposed strategies in this paper are as fol-
lows. We propose a model that uses convolutional GRU
to explore spatio-temporal information, and we utilizes
sparse depth cues. To prevent scale problems of the sparse
depth cues, additional convolutional layers with a con-
fidence value calculated by given camera poses help to
train the model using sparse depth cues. Moreover, using
the proposed regularization estimates more accurate and
robust structures of scenes according to the depth cues.
By using space increasing descritization approach, train-
ing has more less errors by eliminating ill-effects of large
distances. In the experiments, the proposed methods is
more accurate than other methods with real-time system.
the proposed methods can learn the features of structures
without any deep feature extractor by recurrent CNN ar-
chitecture, and accomplish high accuracy with real-time
speed. This model can be used for SLAM system to op-
erate accurate localization and mapping by using the pre-
dicted depth maps which are robust in spatio-temporal do-
main. For the future work, we will modify this model to
unsupervised learning using depth cues with camera poses
and apply ordinal regression model to improve the accu-
racy of prediction.
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